User Experiences with a Chapel Implementation of UTS

Claudia Fohry
FG Programmiersprachen/-methodik
FB Elektrotechnik/Informatik
Universitit Kassel, Germany
Email: fohry@uni-kassel.de

Abstract—Chapel strives to combine programmability
and performance in an architecture-independent way.
We focus on programmability, and report on our ex-
periences in implementing the Unbalanced Tree Search
(UTS) benchmark with user-level task pools. Our con-
tributions include a discussion on how to code objects
that internally contain distributed arrays, as well as
suggestions for language design such as support for
locale-specific and task-specific data, scalar variable-
based reduction, and the omission of const.

The ambition of high-productivity parallel program-
ming has led to the PGAS programming model and
its concretization in a number of implementations.
PGAS exposes a shared memory that is split into
disjoint partitions, each comprising distinct computing
resources that have faster access to local than to remote
memory. This talk considers Chapel, which is mostly
being developed at Cray.

To assess the expressiveness of Chapel, we imple-
mented the Unbalanced Tree Search (UTS) bench-
mark [1]. This benchmark allows us to concentrate on
task parallelism, remote memory access and related
issues. It consists in extracting a highly-imbalanced
tree and counting the number of nodes. For given
tree shape parameters, a node holds all information
about the subtree rooted in it. The information is
cryptographically encoded in a node descriptor, which
naturally describes a task.

We implemented UTS with a conventional, user-
level task pool, which deploys a fixed number of long-
running Chapel tasks per locale as workers, and a
distributed data structure for mutual work stealing. This
setting allowed us to study communication, synchro-
nization, and the interplay between object-orientation
and parallelism / distribution in a simple framework. It
is different from that of a previous Chapel implemen-

Jens Breitbart
Lehrstuhl fiir Rechnertechnik und

Rechnerorganisation/Parallelrechnerarchitektur

Technische Universitdt Miinchen, Germany
Email: j.breitbart@tum.de

tation of UTS [2], but we reused some of its sequential
code.

The talk describes our experiences, thereby concen-
trating on language features that we felt missing or
difficult to use, as well as on patterns of language
usage. The code can be obtained from the first author’s
homepage. The talk uses material from a previous
paper [3]. The main contributions of the talk are on
the usage side

« a pattern for coding objects that internally contain

distributed arrays,

e a comparison between use of class vs. record

constructs for tree nodes,

o remarks on the use of synchronization variables,

and

o performance numbers;
as well as on the language side exposure of issues

« support for locale-specific and task-specific data,

o possibility to spawn tasks on groups of locales,

« scalar variable-based (as opposed to array-based)

reduction, and

e omission of const.

REFERENCES

[1] S. Olivier et al., “UTS: An Unbalanced Tree Search
benchmark,” in Proc. Workshop on Languages and
Compilers for High-Performance Computing. Springer
LNCS 4382, 2006, pp. 235-250.

[2] J. Dinan et al., “Unbalanced Tree Search (UTS) bench-
mark in Chapel,” July 2007, Program source available at
https://chapel.svn.sourceforge.net/svnroot/chapel/ trunk-
/test/studies/uts/.

[3] C. Fohry and J. Breitbart, “Experiences with implement-
ing task pools in Chapel and X10,” in Proc. 10th Int.
Conf. on Parallel Processing and Applied Mathematics.
Springer LNCS 8385, to appear, 2013.



